AERIS partner in the C3IEL mission

As part of the future C3IEL space mission, the CNES has chosen to entrust AERIS with the operation of the French part of the data processing and distribution centre.

C3IEL (Cluster for Cloud Evolution, ClimatE and Lightning) is a joint space mission between the French (CNES) and the Israeli (ISA) space agencies. It relies on a cluster of synchronized nano-satellites mainly focused on the study of convective clouds at high spatial resolution. It will be a scientific and technological world first, by making it possible to measure the convective clouds updraft together with water vapor and lightning observations.

The different nano-satellites of the C3IEL mission (2 or 3 to be defined) will carry visible spectrum cameras (CLOUD) measuring at a spatial resolution of about 20 meters, near-infrared imagers (WV) measuring in and around water vapor absorption bands (500 m resolution), optical lightning sensors and photometers (Zeus). The observational strategy for the imagers will consist in multi-angular observations of a given cloudy scene during the 200 seconds of the overpass with instantaneous stereoscopic pairs captured every 5 to 30 seconds (configurable). Lightning observations will be made continuously during the same time. The measurements of these space-borne sensors will consequently simultaneously document the vertical cloud development retrieved by a stereoscopic method, the lightning activity and the distribution of water vapor at a high resolution by exploiting the multi-angle acquisitions for application of tomography methods.

The cost of the mission will be shared between France and Israel with balanced contributions. CNES will provide the satellite platforms and ISA will be in charge of the payload instruments.

The detailed architecture of the ground segment is currently being defined but, on the French side, CNES will develop the geometric processing of the high-resolution imagers (3D reconstruction of clouds) and will entrust AERIS with the integration of the level 1 and level 2 processing chains in the ICARE Data Center as well as the production and dissemination of data when the satellites are in orbit. The processing algorithms for level 2 and 3 products will be designed by the scientific laboratories involved in the project and made operational by AERIS.

Clouds are key elements of the Earth climate system. However, lots of uncertainties remain about their evolutions and their roles in the context of climate change. Thus, increasing our knowledge of the cloud development processes and their interactions with water vapor and aerosols is essential for our understanding of the ‘Earth System’.

Through its participation in this innovative project, to produce and distribute the data, AERIS puts itself at the service of the French scientific community to contribute to the national effort in the framework of research on climate change.

C3IEL scientific objectives: measurements of the temporal evolution of clouds in 3D and at decametric resolution, together the associated lightning activity and the surrounding water vapor field.

Quantifying the convective cloud vertical velocity and the associated mixing rate

 Investigating the relationship between cloud physical and cloud dynamical properties

 Separating dynamical effects from aerosol impact in convective cloud development

 Studying the lightning activity in convective clouds according to their dynamical and microphysical properties

 Documenting the repartition and size of convective clouds and individual eddies of few hundreds of meters

 Studying the link between lightning activity and upper tropospheric water vapor

 

 

More news

Highlights

AERIS takes part in the Sargassum chase

In frame of the SAREDA (SArgassum Evolving Distribution in the Atlantic) project, the Mediterranean Institute of Oceanology (MIO), in collaboration with LIS, HYGEOS and AERIS/ICARE, has set up a system for monitoring Sargassum in the Atlantic Ocean using spatial data from NASA’s MODIS instrument. The objective of this project is the operationalization of a processing […]

18.02.2021

Highlights

Recent progress of the AERUS-GEO project for global observation of aerosols from geostationary satellites

Over past years CNRM has developed with support from AERIS/ICARE the AERUS-GEO suite of Aerosols and Surface properties products (https://www.icare.univ-lille.fr/projects/user-driven-projects/aerus-geo/). Initially aimed at providing a daily averaged Aerosol Optical Depth (AOD) from SEVIRI sensors aboard the MSG satelliteseries, the project is now about to provide retrievals of aerosol properties at 15-min intervals thanks to the new i-AERUS-GEO algorithm (currently under validation). Also, thanks to […]

20.11.2020

Highlights

Ground based lidar observation new product: water vapor concentration profiles

Water vapour is an essential climate variable involved in many processes, widely determining the energy budget of our planet. The profiling of the atmospheric relative humidity is therefore part of the parameters to be measured in the framework of the European Research Infrastructure ACTRIS. More and more French lidars have the ability to measure water […]

12.02.2020

Search